31 research outputs found

    Medical treatment of pulmonary hypertension in adults with congenital heart disease : updated and extended results from the International COMPERA-CHD Registry

    Get PDF
    Funding Information: The authors are indebted to the COMPERA investigators and their staff. We explicitly thank Dr. Claudia S. Copeland for the professional editing of the final draft of the manuscript. Funding: COMPERA is funded by unrestricted grants from Acceleron, Actelion Pharmaceuticals (Janssen), Bayer, OMT and GSK. These companies were not involved in data analysis or the writing of this manuscript. Funding Information: ICMJE uniform disclosure form (available at https:// dx.doi.org/10.21037/cdt-21-351). The series “Current Management Aspects in Adult Congenital Heart Disease (ACHD): Part IV” was commissioned by the editorial office without any funding or sponsorship. Dr. DH reports non-financial support from Actelion, Boehringer-Ingelheim, and Shire, outside the submitted work; Dr. DP reports personal fees from Actelion, Biogen, Aspen, Bayer, Boehringer Ingelheim, Daiichi Sankyo, and Sanofi, outside the submitted work; Dr. MD reports personal fees from Actelion, Bayer, GSK and MSD, outside the submitted work; Dr. HAG reports personal fees from Actelion, Bayer, Gilead, GSK, MSD, Pfizer and United Therapeutics, outside the submitted work; Dr. MG reports personal fees from Actelion, Bayer and GSK, outside the submitted work; Dr. MMH reports personal fees from Acceleron, Actelion, Bayer, MSD and Pfizer, outside the submitted work; Dr. CDV reports personal fees from Actelion, Bayer, GSK, MSD, Pfizer, and United Therapeutics, outside the submitted work; Dr. RE reports personal fees from Actelion, Boehringer Ingelheim, OMT, Bayer, and Berlin Chemie; grants from Actelion and Boehringer Ingelheim, outside the submitted work; Dr. MH reports grants and personal fees from Actelion, personal fees from Bayer, Berlin Chemie, Boehringer Ingelheim, GSK, Janssen, Novartis and MSD, outside the submitted work; Dr. MH reports personal fees from Acceleron, Actelion, AstraZeneca, Bayer, BERLIN CHEMIE, GSK, MSD, Novartis and OMT, outside the submitted work; Dr. HW reports personal fees from Action, Bayer, Biotest, Boehringer, GSK, Pfizer, and Roche, outside the submitted work; Dr. DS reports personal fees from Actelion, Bayer, and GSK, outside the submitted work; Dr. LS reports personal fees from Actelion, Bayer, and MSD, outside the submitted work; Dr. SU reports grants from Swiss National Science Foundation, Zurich Lung, Swiss Lung, and Orpha Swiss, grants and personal fees from Actelion SA/Johnson & Johnson, Switzerland, and MSD Switzerland, outside the submitted work; Dr. TJL reports personal fees from Actelion, Janssen-Cilag, BMS, MSD, and OMT GmbH, outside the submitted work; Dr. LB reports personal fees from Actelion, outside the submitted work; Dr. MC reports personal fees from Boehringer Ingelheim Pharma GmbH, Roche Pharma, and Boehringer Ingelheim, outside the submitted work; Dr. HW reports personal fees from Boehringer Ingelheim, and Roche, outside the submitted work. Dr. EG reports personal fees from Actelion, Janssen, Bayer, MSD, Bial, OrPha Swiss GmbH, OMT and Medscape, outside the submitted work; Dr. SR reports personal fees from Actelion, Bayer, GSK, Pfizer, Novartis, Gilead, MSD, and United Therapeutics, outside the submitted work. The authors have no other conflicts of interest to declare. Publisher Copyright: © Cardiovascular Diagnosis and Therapy. All rights reserved.Background: Pulmonary arterial hypertension (PAH) is common in congenital heart disease (CHD). Because clinical-trial data on PAH associated with CHD (PAH-CHD) remain limited, registry data on the long-term course are essential. This analysis aimed to update information from the COMPERA-CHD registry on management strategies based on real-world data. Methods: The prospective international pulmonary hypertension registry COMPERA has since 2007 enrolled more than 10,000 patients. COMPERA-CHD is a sub-registry for patients with PAH-CHD Results: A total of 769 patients with PAH-CHD from 62 specialized centers in 12 countries were included into COMPERA-CHD from January 2007 through September 2020. At the last follow-up in 09/2020, patients [mean age 45.3±16.8 years; 512 (66%) female] had either post-tricuspid shunts (n=359; 46.7%), pre-tricuspid shunts (n=249; 32.4%), complex CHD (n=132; 17.2%), congenital left heart or aortic valve or aortic disease (n=9; 1.3%), or miscellaneous CHD (n=20; 2.6%). The mean 6-minute walking distance was 369±121 m, and 28.2%, 56.0%, and 3.8% were in WHO functional class I/II, III or IV, respectively (12.0% unknown). Compared with the previously published COMPERA-CHD data, after 21 months of followup, the number of included PAH-CHD patients increased by 91 (13.4%). Within this group the number of Eisenmenger patients rose by 39 (16.3%), the number of “Non-Eisenmenger PAH” patients by 45 (26.9%). Currently, among the 674 patients from the PAH-CHD group with at least one follow-up, 450 (66.8%) received endothelin receptor antagonists (ERA), 416 (61.7%) PDE-5 inhibitors, 85 (12.6%) prostacyclin analogues, and 36 (5.3%) the sGC stimulator riociguat. While at first inclusion in the COMPERA-CHD registry, treatment was predominantly monotherapy (69.3%), this has shifted to favoring combination therapy in the current group (53%). For the first time, the nature, frequency, and treatment of significant comorbidities requiring supportive care and medication are described. Conclusions: Analyzing “real life data” from the international COMPERA-CHD registry, we present a comprehensive overview about current management modalities and treatment concepts in PAH-CHD. There was an trend towards more aggressive treatment strategies and combination therapies. In the future, particular attention must be directed to the “Non-Eisenmenger PAH” group and to patients with complex CHD, including Fontan patients.publishersversionPeer reviewe

    Evaluation of the Effectiveness of an Interdisciplinary Preventive Oral Hygiene Program for Children with Congenital Heart Disease

    No full text
    It is recognized that children with congenital heart disease (CHD) are predisposed to having poorer oral health. Therefore, the purpose of this study was to evaluate the effectiveness of an interdisciplinary preventive oral hygiene program (POHP) for children with CHD. The aim was the reduction of the incidence of dental caries, as well as improvement of oral hygiene. The total number of participants in this study was 107 children with CHD aged between two to six years. At baseline, these children were compared to a healthy control group (HCG) of 101 children of similar age from five preschools in Giessen, Germany. All examinations were carried out before the introduction of a standardized POHP. The Quigley/Hein Plaque- (QHI), Silness/Loe Gingival- (GI) and Gingival Hyperplasia Index (GHI) were determined. Starting with baseline, the described procedures were repeated in the CHD group during two follow-ups after three and six months. In the first examination, compared to controls, CHD children showed a significantly (p < 0.05) poorer oral hygiene (QHI: 2.6; GI: 0.3; GHI: 0.2). All oral hygiene parameters (QHI, GI, GHI) of the CHD group improved significantly over the whole period of the preventive program (p < 0.05). These results demonstrated an improvement in CHD children involved in a standardized POHP. The data with regard to the general health of these risk patients, including prevention of endocarditis, demonstrate the necessity of an interdisciplinary approach between pediatric cardiologists, pediatricians and dentists

    Left Ventricular Physiology and Ventricular‐Vascular Interactions in Young Patients After Heart Transplantation

    No full text
    Background In patients after heart transplantation, systemic arterial hypertension and enhanced central aortic stiffness contribute to increased ventricular afterload, which might lead to graft dysfunction. The aim of our study was to characterize systemic arterial elastance and its impact on left ventricular function and ventriculo‐arterial coupling in a cohort of children, adolescents, and young adults after heart transplantation using invasive conductance catheter technique. Methods and Results Thirty patients who had heart transplants (age, 20.0±6.5 years, 7 female) underwent invasive cardiac catheterization including pressure‐volume loop analysis. Load‐independent parameters of systolic (ventricular elastance [Ees]) and diastolic (ventricular compliance) function as well as systemic arterial elastance (Ea, end‐systolic pressure/stroke volume) and ventriculo‐arterial coupling (Ea/Ees) were assessed at baseline level and during dobutamine infusion (10 μg/kg/min). Ees showed an appropriate increase under inotropic stimulation from 0.43 (0.11–2.52) to 1.00 (0.20–5.10) mm Hg/mL/m2 (P<0.0001), whereas ventricular compliance remained rather unchanged (0.16±0.10 mm Hg/mL/m2 to 0.12±0.07 mm Hg/mL/m2; P=0.10). Ventriculo‐arterial coupling Ea/Ees was abnormal at rest and did not improve significantly under dobutamine (1.7 [0.6–6.7] to 1.3 [0.5–4.9], P=0.70) due to a simultaneous rise in Ea from 0.71 (0.37–2.82) to 1.10 (0.52–4.03) mm Hg/mL/m2 (P<0.0001). Both Ees and ventricular compliance were significantly associated with Ea at baseline and under dobutamine infusion. Conclusions Patients who underwent heart transplantation show impaired ventriculo‐arterial coupling at rest and under inotropic stimulation despite preserved left ventricular contractile reserve. An abnormal response in vascular function resulting in increased afterload seems to represent an important factor that may play a role for the development of late graft failure
    corecore